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ABSTRACT 

Let ~,b denote the maximal abelian extension of the rationals Q, and 

let Qabnll denote the maximal nilpotent extension of ~b. We prove that 

for every prime p, the free pro-p group on countab]y many generators is 

realizable as the Galois group of a regular extension of ~bnil (t). We also 

prove t ha t  Qabnil is not  PAC (pseudo-algebraical ly closed). 

Introduct ion  

Let k be a field, G a profinite group. We will say that  G is regular over k if there 

exists a Galois extension K of the rational function field k(t)  which is regular over 

k such that  G ( K / k ( t ) )  ~- G. Let Qab denote the maximal abelian extension of the 

rationals Q, and let Qabnil  denote the maximal nilpotent extension of Qab. We 

prove that  for every prime p, the free pro-p group on countably many generators 

is regular over Qabnil. This in particular implies that  every finite nilpotent group 

is regular over Qabnil, and that  the same results hold with Q~bnil replaced by 

any algebraic extension k of ~ a b n i l ;  in particular, every finite nilpotent group is 

regular over Qsol, where Q~ol is the maximal  solvable extension of Q. To put this 

result in perspective, it is known that  every finite abelian group is regular over 
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Q (see e.g. [M, p.224] or [FJ, Lemma 24.46]), but it is not known if every finite 

nilpotent group is regular over Q [Sel, p. 16]. On the other hand, Fried and 

V51klein [FV] have recently proved that every finite group is regular over k if k 

is PAC (pseudo-algebraically closed) of characteristic zero. A field k is PAC iff 

every absolutely irreducible variety defined over k has a k-rational point. It is an 

open question IF J, p. 136] whether or not Q~ol is PAC, but we will prove below 

that Qabnil is not PAC. 

The proof parallels the classical method of realizing finite p-groups over number 

fields, by means of a local-global principle for embedding problems. The role of 

the classical theorem of Albert Hasse--Brauer--Noether  on the Brauer group 

of a number field is played here by Theorem 1.1 concerning the injectivity of the 

canonical map from the Brauer group of a rational function field in one variable 

to the direct product of the Brauer groups of the completions at the geometric 

primes. 

In this paper we will use the following notations. If F is a field, F will denote 

the algebraic closure of F,  Fs the separable closure of F, GF = G ( F s / F )  the 

absolute Galois group of F,  Br(F)  the Brauer group of F. If A is an abelian 

group and p is a prime, Ap will denote the p-primary component of A, i.e. the 

subgroup of A consisting of all elements of p-power order. 

1. B r a u e r  g r o u p s  o f  r a t i o n a l  f u n c t i o n  fields 

THEOREM 1.1: Let p be a prime number, and let k be a field of  characteristic 

r p, K = k(t) a rational function field in one variable over k, V the set of finite 

primes of  K trivial on k (corresponding to irreducible polynomials in k[t]), and 

K ,  the completion of  K at v E V. Then the map 

l - I res , :  Br(K)p ~ H Br(Kv)p 
v vEV 

is injective, where K ,  denotes the completion of  K at v, and res,: Br(K)B -* 

Br(K,)p  the restriction map. 

Remark: We are indebted to David Saltman for pointing out that  Theorem 

1.1 is essentially known, in the framework of the theory of Brauer groups of 

commutative rings. Indeed in the case char(k) = 0, the injectivity of the map 

Br(K)  --* 1-I, Br (K, )  can easily be deduced from fAG, Prop. 7.4, Theorem 7.5, 
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and Prop. 8.2]. Moreover, it is stated in fAG] that all the results in that paper 

can be proved with no added difficulty for p-primary components in characteristic 

r p, so that Theorem 1.1 can be also proved in the same way. Having said this, 

we will give a "self-contained" proof, which is based on the following lemma. 

LEMMA 1.2: Assumep r char(k). Let~3 C ks, k' = k(/3), F = k'((t-/3)) (formal 

power series field), E = ksF (the maximal unramified extension of F). Then we 

have the following commutative diagram: 

H2(Gk, k,(t)*)p ~ f  H2(Gk(t),k(t):)p = Br(k(t))p 

H2(Gk,,E*)p inf  " HZ(GF, F*)p = Br(F)p 

where the horizontal maps are canonical isomorphisms. 

Proof: The diagram is commutative because it is induced by an inclusion 

diagram of fields. (Note that Fs = k(t)sF by Krasner's Lemma, so GF can be 

identified with a subgroup of Gk(t).) By the exact inflation-restriction sequence 

[Se, Prop. 6, p. 156], it suffices to show: 

(1) H2(Gk~(t), k(t):)p = 0, and 

(2) H2(GE, F:)p = O. 

(1) is [FS, Lemma 2, p. 51] (essentially Tsen's theorem). 

(2) Observing that E is Henselian and that E' = ks((t - /3))  is the completion 

of E, we show first that GE ~ GE,. Consider the field diagram 

E' 

/ 
E~ E'  

/ 
E 

By a corollary to Krasner's Lemma [Rib, Cor. 2, p. 190], E~ A E I = E, and 

by another corollary to Krasner's Lemma [J, Prop. 12.3], EsE ~ = EI~. It follows 

that GE ~ GE,. Let T ~ be the maximal tamely ramified extension of E ~. Every 

finite subextension of T' /E '  is of the form E'(Tr 1/~) with ~r = u(t-/3),  u a unit in 

k~[[t-/3]] [W, Theorem 3-4-3] since char(k) e P- But u 1/n �9 E 1, hence E'(Tr l/n) = 



(,) 
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E'(( t  -/3)1/n). Since the nth roots of unity lie in E, E'(( t  - ~3)l/n)/E' is a cyclic 

extension of degree n. It follows that G(T'/E')  is a procyclic group, hence 

cdpG(T'/E') = 1, where cdp denotes the cohomological p-dimension. Further, 

G(E'JT') is a pro-q-group, where q = char(k), so cdpG(E'JT') = 0. By [Ri, 

Prop. 2.6, p. 209] cdpGE, = 1. Since GE ~- GE,, cdpGE _< 1. It follows that 

H2(GE, F*)p = O. | 

Proof of Theorem 1.1: Let v 6 ]2. Then k(t), -~ k(3)((t-/~)),  where/3 is a root 

of an irreducible polynomial in k[t] corresponding to v. By Lemma 1.2, it suffices 

to prove that 

H2(ak, ks(t)*)p-~ II  H2(ak(z) 'E*~)p 

is injective, where EZ = ks.k(/3)((t - ~)). 
We decompose ks(t)* as a Gk-module: 

ks(t)* = k: • H <t- ~>G~ 
aEk,IGk 

where (t - a> ck = ~eG~/Gk(~)<t -- a) ~, and ks/Gk denotes the orbit space of 

ks under Gk. Similarly we decompose E~ as a Gk(z)-module: 

E ;  = Uf~ x (t - Z) 

where U~ is the group of units of (the valuation ring of) E~. Passing to coho- 

mology, we have 

s2(ek, k~(t)*)p u H:(Gk, k*), �9 [6]~ U2( Gk, (t - a>v~)p] 
Ot 

H2(Gk(z), E*~)p = H2(Gk(z), U~)p @ H2(Gk(z), (t - /3))p.  

Since the map ks(t)* ~ E*~ carries k* and ( t -a)  ak into UZ for a # fl, the induced 

map carries H 2 ( G k, k* )p and ~ r  H 2 (Gk, (t - a) ak )p into H 2 (Gk (~), U~ )p. The 

remaining summand involves (t -/3> ak which as Gk(~)-module decomposes as 

(t-/3> • M, where M is the product of ( t - f l ' ) ,  fl' running through the conjugates 

of fl different from/3. The map ks(t)* ~ E~ carries (t - /~)  into (t - /3 )  and M 

into UZ. The map 

H2(ak, <t - ~>G~)p __~ H2(Gk(~), <t - ~>)p @ H2(Gk(~), U~)p 
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factors as follows: 

H2(Gk, (t -/3)a~)p ~ H2(Gk(z), (t - / 3 )  • M)p 

= H2(Gk(z), ( t - / 3 ) ) p  | H2(Gk(z) ,M)p 

-~ H2(G~(~), (t - ~))p �9 H~(ak(~), U~),. 

By Shapiro's lemma [Ri, Theorem 7.4, p. 146], projection onto the first sum- 

mand yields an isomorphism 

H2(Gk, (t - /3)ak)p  _ ~  U2(ak(~), (t - Z))p. 

Now suppose c E Br(k(t))p is in the kernel of all the maps Br(k(t))p --~ 

Br(k(t) ,)p.  Looking at the components of c in the decomposition (*) we see that 

for each/3, the component of c in H2(Gk, (t - /3)a~)p is zero. Thus c C Br(k)p. 

Finally, take a prime v of degree one, corresponding to t, say. Then the summand 

Br(k)p is carried isomorphically to itself in Br(k((t)))p, so c = 0. | 

2. E m b e d d i n g  p r o b l e m s  

Let K be any field. An e m b e d d i n g  p r o b l e m  over K is an exact diagram 

GK 

1 * A  , G  , 1  e 
with E finite, G = G ( L / K ) .  We will assume A abelian. An embedding problem 

(2.1) will be called c e n t r a l  if A maps into the center of E.  A (weak) so lu t ion  

is a continuous homomorphism f :  GK --* E such that e o f = res. If the group 

extension e: E --* G happens to split, then there is the t r iv ia l  solution s ores, 

where s: G --* E is a section. If f is surjective, f is called a p r o p e r  solution, and 

the fixed field of ker f is a so lu t ion  field N with G ( N / K )  ~ E. It is known IF J, 

Prop. 24.49] that if K is Hilbertian (and A is abelian), then every embedding 

problem that has a solution has a proper solution. 

PROPOSITION 2.1 ([H, 1.1]): Let c E H2(G, A) correspond to the group exten- 

sion 1 --* A --* E -* G --+ 1. Then there is a solution to (2.1) i[ and only i[ 

inf(c) = 0, where inf : H2(G, A) --* H~(GK, A) is the inflation map. 

Now let V be an index set, and let {Kv: v E V} be a family of extensions of 

K. Given an embedding problem (2.1) over K, there is an induced embedding 

ires 
) E  

(2.1) 
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problem 

(2.2) 

1 , A  

GK. * GK 

E~ ~ G~ , 1  

where G.  = res(Gico) C_ G, E .  = e-l(G~). A "global" solution f induces a 

"local" solution f~ = f la~. .  

PROPOSITION 2.2 (N, 2.2): Suppose the map 

res: H2(GK, A) -* H H2(GK~' A) 
vCV 

is injective. If  the local embedding problem (2.2) has a solution for all v E V, 

then the global embedding problem (2.1) has a solution. 

Proof." Consider the commutative diagram 

H2(GK, A) I - I v H 2 ( G K . , A )  

l inf  Iinf 
H2(G,A) rcs . l-I .  H2(G., A) 

and apply Proposition 2.1. | 

Assume now that A (considered as a GK-module via G) is GK-isomorphic to 

#n, the group of n th  roots of unity in K,  where n is a power of a prime p # 

char(k). We can then identify H2(GK, A) with H2(GK, #~) which is isomorphic 

to Br~(K), the subgroup of Br(K) killed by n (consider the exact sequence 

0 --+ H2(GK, Pn) --4 H2(GK, g*)  = Br(K) ~, H2(GK, K*) corresponding to 

the short exact sequence 1 --* #n --~ K* --* K* --* 1). 

PROPOSITION 2.3: Let n be a power ofa  prime p ~ char(k), and suppose A -~ ~n 

as G K-modules. If  the map Br(K)p --~ 1-Iv Br(K,)p is injective, then the existence 

of a solution to the local embedding problem (2.2) for all v E Y implies the 

existence of a solution to the global embedding problem (2.1). 



Vol. 85, 1994 BRAUER GROUPS 397 

Proof" Consider the commutative diagram 

Br(K)p * 1-iv Br(Kv)p 

?- 
H (aK, A) " 1-L H (a o, A) 

and apply Proposition 2.2. | 

THEOREM 2.4: Let K be a rational function field k(t), and ~d be the set of finite 

primes of K (trivial on k). Let n be a power of a prime p # char(k), and let 

(2.1) be an embedding problem over K with A ~- #n as GK-modules. If  there 

is a solution to the local embedding problem (2.2) for all v E V, then there is a 

proper solution to the global embedding problem (2.1). 

Proof." By Theorem 1.1 and Proposition 2.3, there is a solution to the global 

embedding problem (2.1). Since K is Hilbertian, there is a proper solution. | 

We will require the following classical fact about embedding problems. 

PROPOSITION 2.5. (cf. [Sh, p.109]): Let (2.1) be a central embedding problem 

with A ~- Z /pZ ,  p prime, #p C_ K. Assume there is a solution with solution field 

L(al /v) ,  a C L*. Then the set of solution fields coincides with the set of fields 

L((aa)l/P),  a e K*. 

Proof." We begin with the following lemma. 

LEMMA 2.6: Let G be a finite group, p a prime, and let 

1 --~ Z / p Z  ~ Ei ~ G ---* 1 

{ = 1, 2, be two central group extensions. Then there exists an isomorphism 

qo: E1 ~ E2 such that e2~ = el if and only if the two group extensions 

1 --+ Z/pZ -+ E1 xG E2 ~ E{ -+ 1 

split, i = 1, 2, where 

E1 •  E2 ~-- {(Xl ,X2)  E E1 • E2: e1(xl) -- e2(x2)} ,  
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and r;i: E1 • E2 ~ E~ is the projection onto Ei. 

Proof'. Suppose there exists an isomorphism ~: E1 --~ E2 such that  e2~fl = el. 

Then ~ iaduces a homomorphism ~5:E1 ~ E1 •  E~, ~5(x) = (x, ~(x)) such that  

7~1~ = i d ,  so 1 ~ Z / p Z ~  E1 •  ~ E 1  ~ 1 splits. Applying the same 

argument to ~-1  yields the splitting over ~2. 

Conversely suppose the group extensions 1 ~ Z/pZ -~ E1 • c E2 ~ E~ -~ 1 

split. Then there exists a homomorphism r E1 ~ E1 •  E2 such that  1hr = id. 

Writing r  = ( r162 we have r = x, and r  --* E2 is 

a homomorphism such that  e2r = el(x)  for all x E El ,  so e2r = el. 

Then ker(r C_ ker(el) ~ Z/pZ. If  ker(r = 1, we are done. Otherwise, 

ker(r = ker(el) = Z/pZ,  r factors through E1/ker(el), so E2 splits over 

G. By symmetry,  we are reduced to the case where both El ,  E2 split over G. 

Since both extensions are central, we are done. | 

Now to prove Proposition 2.5, let Ni = L(a~/p) ~ L be Galois over K, Ei = 

G ( N J K ) ,  i = 1, 2. Suppose first that  N1 is a solution field to the given embed- 

ding problem, and that  (~2 = a(~l, a �9 K*. Then N = N1N2 = Nl(a 1/p) = 

NIK(al/P), so if N1 # N2, G ( N / K )  ~ E1 • E2 is a split extension of El ,  so by 

Lemma 2.6, N2 is also a solution field. 

Conversely, suppose N1,N2 are distinct solution fields to the given embedding 

problem. Then (with N = N1N2) G ( N / K )  -~ E1 • E2, and ~ri: E~ ---* G is the 

restriction map. By Lemma 2.6, the group extension 1 --~ Z/pZ ~ G ( N / K )  -* 

G(NI /K)  ~ 1 splits, which implies that  N = Nl(a 1/p) with a �9 K*. But 

N = N1 (a2 l/p) which by Kummer  theory means that  (~2a -1 �9 N~ p (replacing a by 

a power of a if necessary). Then a2a -1 �9 N~ p A L* implies L(((~2a-1) 1/p) C_ N1. 

If equality holds, then by Kummer  theory, (~2a-1(~ -1 �9 L *p (replacing a l  by 

some power of itself if necessary) as desired. Otherwise, a2a -1 �9 L *p and we are 

in the split case, which implies that  also al �9 t(*L *p, as desired. | 

3.  p - g r o u p s  a s  Galo is  g r o u p s  

Let p be a fixed prime and k a field of characteristic # p such that  

(3.1) k contains all p-power roots of unity, 

(3.2) every central embedding problem (2.1) over any finite extension k' of k with 

A ~- Z /pZ has a solution. 

(3.2) holds e.g. if cdpGk < 1 [Ri, Prop. 3.1, p. 211]. 
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Example: Every algebraic extension k of Q(p(pOO)),p(pO~) =group of all p- 

power roots of unity, satisfies (3.1) and (3.2). Indeed, cdpGk < 1 by [Ri, Theorem 

8.8, p. 302]. 

Definition: Let K = k(t) and let L / K  be a finite Galois extension with Galois 

group G. L / K  is a Scholz  extension iff every prime of K (trivial on k) which 

ramifies in L is tamely ramified and of degree one in L/K.  In other words, if v 

is a prime of K that ramifies in L, then the local extension Lv/Kv is totally and 

tamely ramified. 

PROPOSITION 3.1: Assume k satisfies (3.1) and (3.2). If  L / K  is a Scholz exten- 

sion, then every central embedding problem (2.1) with A ~- Z /pZ  has a proper 

solution. 

Proof." Since #p c_ K,  we have A ~- Z /pZ -~ Pv, so we may apply Theorem 

2.4, which reduces the proof to checking that there is a solution to the local 

embedding problem (2.2) for each finite prime v of K.  Let v be a finite prime of 

K. There are two possibilities. 

CASE 1: v is unramified in L. Then Kv ~ k'((u)) (formal power series field) 

where k' is a finite extension of k, and L.  = LKv is an unramified extension 

s of k'((u)). The local embedding problem translates down to an embedding 

problem over k' with G = G(s which has a solution by property (3.2). The 

solution translates back up to a (unramified) solution to the local embedding 

problem over K. .  

CASE 2: v ramifies in L. Then L , / K ,  is totally and tamely ramified. Hence 

K~ = k'((u)) and L~ = k'((ul/~)), where e is the ramification index [W, 3-4- 

3], and k' contains the eth roots of unity because L~/K,~ is Galois. The local 

embedding problem therefore has a proper solution with solution field k'((ul/P~)) 

(note that k' contains the peth roots of unity) if the extension 

1--~ A--~ Ev-~  Gv--~ I 

does not split, and has the trivial solution if the extension splits. | 

PROPOSITION 3.2: Let k satisfy (3.1) and (3.2), L / K  a Scholg extension. Then 

every nonsplit central embedding problem (2.1) over K with A ~ Z /pZ  has a 

proper solution whose solution field N has the property that every finite prime 

v of K which is unramified in L remains unramified in N. 
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Proof: By Proposition 3.1, there is a solution field N. We may write N = 

L(al/P), with a 6L. Since G ( N / K )  is a central extension of G(L/K) ,  a is fixed 

by G = G(L /K)  modulo L *p, i.e. a (a )  = a~  p, 3o 6 L*, for every a e G. (Indeed, 

since N / K  is Galois, we have L(a(a) 1/p) = L(a 1/p) = N for every a e G(L/ I ( ) .  

Fix a and extend it to N. Then a(a 1/p) = a~/P~, ~ E L*, 0 < i <_ p - 1. Choose 

T 6 G(N/L)  such that  T(a 1/p) = ~a 1/p, where ~ is a primitive pth root of unity. 

Then ar(a  1/p) = a ( ia  1/p) = Ca~/P~, while ra(a  1/p) = r(a~/PZ) = ~a~/PZ. 

Since T is in the center of G(N/K) ,  ~i = r so i = 0 and a (a )  = a~P.) Let R be 

the integral closure of k[t] in L. R is a Dedekind domain with fraction field L. Let 

: / =  In  denote the group of fractional ideals of R. It follows that  the principal 

ideal (a) is fixed by G modulo :/:P. Write (a) = [ Iv  v n v ,  where V runs through 

the primes of n. Then (a(a))  = 1-Iv a (v )  nv = 1-Iv vnv  (m~ for all a 6 G. 

Since G acts transitively on the set of prime divisors in L of a fixed prime v of K,  

we have rty = nv, (modp)  for V, V' dividing the same prime v of K.  It follows 

that  (c~) - A B ( m o d I P ) ,  where A and B are G-invariant ideals, A is divisible 

only by primes unramified in L / K  and hence is the image in I n  of an ideal in 

I g ,  which is necessarily principal (since K is a rational function field): A = (a), 

a 6 K; and B is a product (possibly empty) of primes ramified in L / K ,  with 

multiplicities n~,  1 _< n~, _< p - 1 and n~ - n~., ( mod p) if V, Y' divide the same 

prime v of K. Replacing a with a - l a  = ~ yields a solution field N' = L(~ 1/p) to 

the same embedding problem, by Proposition 2.5, and the only primes ramifying 

in N ' / L  are the divisors of (~) = g mod ~L), proving Proposition 3.2. | 

PROPOSITION 3.3: Let k satisfy (3.1), (3.2), and 

(3.3) k* is p-divisibIe, i.e. k *p = k*. 

Let an embedding problem (2.1) be given, where K = k(t), A -~ Z/pZ,  and 

L / K  is a Scholz p-extension ( L / K  is Scholz and G ( L / K )  is a p-group). Assume 

that all the primes of K that ramify in L are of degree one over k. Then there is 

a proper solution field N ~_ L such that N / K  is a Scholz extension and all the 

primes of K that ramify in N are of degree one over k. 

Proof: 

CASE 1: The embedding problem is nonsplit. Let N be the solution field of 

Proposition 3.2. L e t  v be a finite prime of K ramified in N. Then v is ramified 

in L and therefore v is of degree one over k and Lv/Kv  is totally ramified. 

Claim N v / K ,  is totally ramified. If not, then N,  = L , M ,  where M , / K v  
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is cyclic unramified of degree p. Since v is of degree one, Kv -~ k((u)), and 

Mv TM g((u)), where g/h is cyclic of degree p, contradicting (3.3). Thus N , / K v  is 

totally ramified. Tame ramification is automatic,  since p r char(k). 

CASE 2: The embedding problem is split. Take a finite prime v0 of degree one 

of K which is unramified in L, and let t - a be the corresponding polynomial in 

kit]. (Note k is infinite by (3.1).) Then g = n((t  - a) 1/p) is a solution field, and 

all the primes of K that  ramify in L are of degree one over k. Hence all the primes 

of K tha t  ramify in N are of degree one over k. Indeed, the only finite prime 

that  ramifies in K(( t  - a) 1/p) is v0, hence if v is a prime of K that  ramifies in N, 

then it must ramify either in L or in K(( t  - a)l/P), so either v is of degree one 

by hypothesis or v is v0 which is of degree one as well. Claim: N / K  is a Scholz 

extension. Since N / K  is a p-extension, so is N v / K ,  for every prime v of K. For 

primes v of degree one over k, the inertia field is a constant p-extension of h((t)), 

which is necessarily trivial, by (3.3). (Again tame ramification is automatic.)  

| 

THEOREM 3.4: Let h satisfy (3.1)-(3.3), and let S be a finite set of primes of 

k(t) of degree one over h, containing the inlinite prime. Let K = Ks(p)  be the 

maximal p-extension of h(t) unramified outside S. Then K is a regular extension 

of k and G(K/k ( t ) )  is the free pro-p group on r generators, where r = ISI - 1. 

Proof: We begin by noting that  K is a regular extension of k by (3.1) and (3.3). 

Let t -  a l , . . . , t -  a~ correspond to the finite primes in S. Then 

k(t)((t  - al)I /P, . .  ., (t - a~) 1/p) C_ g is a Scholz extension of k(t) regular over k 

with Galois group Cp (where Cp denotes the cyclic group of order p), in which the 

set of ramified primes is exactly S. Let G be the free pro-p group on r generators, 

G1 = r = GP[G, G], the Frattini subgroup of G, and let G1 D G2 D . . .  be a 

descending chain of open normal subgroups of G with [Gi: Gi+l] = p for all i _> 1, 

and [-)~ G~ = {1 }. Then G - lim G/G~. By case 1 of the proof of Proposition 3.3, 

we can inductively construct a tower of fields h(t) C K1 C K2 C . . .  such that  

Ki/h( t )  is Galois with group G/Gi, and unramified outside S, since from K1 on- 

wards, no new primes ramify (Prop. 3.2). Let L = Ui Ki. Then G(L/k( t ) )  ~- G, 

and L C_ K = Ks(p).  It  remains to show L = K.  The rank of G(K/k( t ) )  is r, 

since K1 is the maximal  elementary abelian p-extension of k(t) unramified out- 

side S. It  follows that  the canonical epimorphism res: G(K/k ( t ) )  --* G(L/k( t ) )  

induces the identity map modulo the Frattini subgroups. Since G(L/k( t ) )  is free, 
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res is an isomorphism, hence L = K. | 

Taking the limit over all finite sets of primes of degree one over k (containing 

the infinite prime) yields 

COROLLARY 3.5: Let k satisfy (3.1)-(3.3). Let KI(p) be the maximalp-extension 

of k(t) unramified outside the set of primes of degree one over k. Then 

e ( K l ( p ) / k ( t ) )  is a free pro-p group on Ikl generators. 

Since k is an infinite field, we immediately get 

COROLLARY 3.6: Let k satisfy (3.1)-(3.3). Then every finite p-group G is regular 

over k, i.e. G is the Galois group of an extension of k(t) which is regular over k. 

4. E x a m p l e s  

1. The maximal extension Q~ol of Q satisfies (3.1)-(3.3) for all p. We therefore 

have 

COROLLARY 4.1: For any prime number p, the free prop group Fp (~) on count- 

ably many generators is regular over Q~ol. Every finite nilpotent group is regular 

o v e r  Qsol .  

Remark: For k = Q~ol, cdpGk = 1 for all p, by [Ri, Theorem 8.8, p. 302], since 

e.g. the alternating group An is realizable over k for all n > 4, and every p 

divides the order of An for some n. Therefore cdpGk(t) = 2, by [Ri, Prop. 5.2, p. 

272], but _@(w) is regular over k for every p. 

It is not known if Q~ol is a PAC field [FJ, p.136]. If it is, then the second 

statement in Corollary 3.7 is a special case of a recent theorem of Fried and 

VSlklein, which says that  every finite group is regular over k if k is a PAC field of 

characteristic zero. We give below an example of a non-PAC field which replaces 

Q~ol in Corollary 3.7. 

2. Let p be fixed, and let k(p) be the maximal p-extension of Q(#p), where #v 

denotes the pth roots of unity. Then k(p) satisfies (3.1)-(3.3). Thus: 

COROLLARY 4.2: The free pro-p group on countably many generators is regular 

over k(p). Every finite p-group is regular over k(p). 

We will see below that k(p) is not PAC. 

Now let k = Q~bnn, the maximal nilpotent extension of the maximal abelian 

extension Q~b of Q. It is not true that  k satisfies (3.3) for all p. However: 
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COROLLARY 4.3: Every finite nilpotent group is regular over Qabnil. 

Proof." First observe that k(p) C_ Q~bnil for all p. Thus every finite p-group is 

regular over ~abnil for all p. Hence so is every finite nilpotent group. | 

We now show that Qabnil iS not PAC. By [FJ, p.132], this implies that every 

subfield of Q~bnil is also not PAC; in particular the fields k(p) are not PAC. 

PROPOSITION 4.4: (~abnil iS Dot PAC. 

Proof (cf. [FJ, Cor. 10.15]): Assume k = Qabnil is PAC. Since kQp n Q is 

Henselian (Q=algebraic closure of Q), it follows from [F J, Theorem 10.14] that 

kQp D Q. By Krasner's lemma [W, 3-2-5], Qp (=algebraic closure of (~p) ~--- (~(~p, 

so kQp = (~p. Now QabQp c_ Qp,ab (in fact equality holds by local Kronecker- 

Weber, but we do not need it here). Hence Qp = kQp c_ kQp,ab c Qp,~b.il C_ Qp, 

so (~p = Qp,abnil. It remains to show that, for some p, a(Qp/Qp,ab) (= G' Qp ) 
is not nilpotent. Let us show this for p = 2 (this holds in fact for all p). If (the 

commutator subgroup) G ~ Q2 were nilpotent, then for every finite Galois extension 

KIQp, G(K/Qp)' would be nilpotent. Since S~ = A4 is not nilpotent, it suffices 

to realize $4 over Q2: 

LEMMA 4 . 5 : $ 4  is a Galois group over Q2. 

Proo~ Let L = Q2(r,w) be the splitting field o fx  3 - 2  over Q2, 7r 3 = 2, w 3 = 1, 

so L/Q2 is a tamely ramified extension with G(L/Q2) ~- $3. Consider the (split) 

exact sequence 

1--~ V--+ SI---r S 3 - - , 1  

where V is the Klein four group. We will solve (properly) the embedding problem 

given by this sequence. The multiplicative group L* of L decomposes into a direct 

product 

L* = (w)  x (:,r) x U~ 

where U~' = group of units = 1 mod ~ " .  U~/U~, ~- L+  ~- ~ as abelian groups 

[W, 1 - 5 - 3], where L is the residue field of L. U~/U 2 is also a a-module, 

G = G(L/Q2), which we can identify with 

(~) x (~) • U ~ l ( ~ )  x (~) x u~, = L * I ( ~ )  x (Tr) x U~. 

Note (w) x (Tr) is G-invariant, as is U~. By local class field theory [Se, p. 170 

(diagram (3)), p. 174 (Theorem 2), p. 195 (Theorem 1)], U~/U~ is G-isomorphic 
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to G(N/L) ,  where N is an extension of L Galois over Qv. (N is class field to 

(w) • (~) x U2.) Thus E = G(N/Qp)  is an extension of G (N/L )  ~ Y by G = 

G(L/Qp) TM $3. Now G acts faithfully on U~/U 2, since {1, 1 +:r ,  1 +wlr,  1 + w27r} 

are representatives of UL 1 mod U 2. Hence G = E / V  acts faithfully on V. It  remains 

to show that  E ~ $4. Let C be a subgroup of order 3 of E. C is not normal in E 

since otherwise C would commute elementwise with V. By Sylow's theorem, the 

number of conjugate subgroups of C in E is 4, so the normalizer H of C in E is of 

index 4 in E. The corresponding permutat ion representation of E on the cosets 

of H yields a homomorphism of E into $4 whose kernel J is the intersection of 

H with its conjugates in E. J does not contain C since C is not normal in E. 

Hence if J is not trivial, J is of order 2 and normal in E,  hence central in E.  But 

this is impossible, since J is not contained in V, and hence maps modulo V to a 

central element of order 2 in $3, contradiction. Hence E = $4. | 
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